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Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel 
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Abstract. A class of random-site mean-field Potts models is introduced and solved exactly. 
The bifurcation properties of the resulting mean-field equations are analysed in detail. 
Particular emphasis is put on the relation between the solutions and the underlying 
symmetries of the model. It turns out that, in contrast to the Ising case, the introduction 
of randomness in the Mattis-Potts model can change the order of the transition. For q 4 6 
the transition becomes second order. 

1. Introduction 

Recently there has been considerable interest in random-site mean-field models, both 
for modelling spin glasses and for describing pattern recognition in neural networks 
[l-151. In these papers Ising spins are considered and, to avoid the fact that by a 
Mattis (or gauge) transformation the model becomes equivalent to a ferromagnet, one 
chooses a number of random variables per site which is larger than one. Here we 
consider the same kind of model for q-state Potts spins. 

I t  turns out that Mattis transformations do not apply in this case, and even the 
Mattis-Luttinger choice [16, 171 for the site random variables gives new effects. In 
contrast to the first-order transition of the ferromagnet, which occurs for q > 2, the 
random model transition becomes first order only for q > 6. The method of solution 
we employ has been developed previously for Ising models with a finite number of 
random-site variables [l-3, 151, and has also been applied to the random-field problem 
[18, 191 and anisotropic spin glasses [20]. 

We describe the model and the main results in the case of the Mattis-Luttinger 
distribution in P 2. In § 3, we carefully study the interplay of bifurcation and symmetry 
in a more abstract setting. Exploiting the symmetries of the Potts model under 
consideration, we then present a comprehensive bifurcation analysis of the mean-field 
equations. Application of our formalism to neural network models (cf [6, 10, 111) is 
then straightforward and will not be given here. 

2. The model and its solution 

We consider a q-state Potts model with Hamiltonian 
N 

HN = - J ( k . M g 4 ,  q). 
I , / =  I 

t Present address: Sonderforschungbereich 123, Im Neuenheimer Feld 294, D-6900 Heidelberg, Federal 
Republic of Germany. 
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Here the wi and U, denote the q possible states at site i and j .  If J (  i, j )  > 0, the model 
is ferromagnetic; if J (  i, j )  < 0, it is antiferromagnetic. For spin-glass models, the J (  i, j )  
are random variables. 

One can write the Potts Hamiltonian in different ways, using different representa- 
tions of the Potts spins. 

(i)  Following Wu [21], we can write 

(2.2) 

where the eo, U = 0,  . . . , q - 1, are q unit vectors, pointing in q directions, which span 
a hypertetrahedron in I W 4 - ' .  This is the representation we will mostly use later in this 
paper. 

(ii) Following Mittag and Stephen [22], we can take for the U points on the unit 
with w = 2 7 ~ 1  q and elw the circle in the complex plane: w = 1, e'", e iZw, .  . . , 

qth root of unity. Then 

e i ( q - l ) w  

1 q-1 - 
k = O  

S(w, w') =- akark =- (2.3) 

The simplest example of a model with site disorder is obtained by the Mattis- 
Luttinger choice J ( i ,  j )  = N-'&5, where the ti are independent random variables which 
are i l  with equal probability. The Hamiltonian then becomes 

if we use (2.2), or becomes 

(2.4) 

(2.5) 

if we use (2.3). For 9'2, the 6, cannot be removed through a gauge (Mattis) 
transformation. 

We have dropped constant terms from the Hamiltonian. The quantities m N ,  m l , N  
and m2,N are vectors in R4- ' .  They represent the relevant order parameters. In (2.4) 
the spin configurations are described by the {w,},,,, ,N and in (2.5) by the { w , } ~ = ~ ,  ,N. 

In both (2.4) and (2.5) E has the dimension of energy. 
To solve the model (in general), we can apply the same techniques which were 

developed before to treat the case of Ising spins. This means that we have to calculate 
the appropriate c functions [3]. The different representations coming from (2.2) and 
(2.3) give rise to correspondingly different c functions. In the Wu representation (2.2) 
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= (In Tr,[exp(&. e U ) ] ) * .  (2.6) 

Here Tr, is the normalised trace at one site, E, is the normalised trace over N sites 
and  (. . .)& denotes an  average with respect to 6. In the Mittag-Stephen representation 
we obtain, for x and y in Rq- ' ,  that 

Taking advantage of some general considerations [ 1-31, one easily derives an  expression 
for the free energy 

-P f (P )=sup  ( F ( m ) - c * ( m ) ) = s u p  ( c ( t ) - F * ( t ) ) .  (2.8) 
m t 

Here c * ( m )  and F * ( t )  are the Legendre transforms of c ( t )  and F ( m ) ,  where F ( m )  is 
defined below. Both c ( t )  and c * ( m )  are convex. The mean-field (fixed-point) equation 
which determines the maximum in (2.8) is 

m = Vc(VF(m)).  (2.9) 

In the Wu representation (2.4) we then find 

(2.10) 

with 

Alternatively, in the special case of (2.4) and (2.5), we could also linearise the 
squares (as was done in [4,7]) so as to computef (P) .  The present method is far more 
general, however. 

To obtain the well known ferromagnetic solution, we put [=  1 in (2.6). Then the 
mean-field equation is 

Tr, e ,  exp( km e,)  
m = V c ( k m )  = 

Tr, exp( km e,) ' 
(2.11) 

The vector m = 0 is always a solution, and  for small k it is the only one. Suppose now 
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that we have spontaneous magnetisation in the direction eo; that is, m = heo. Then 

eo exp(kA)+(C,4:: e') exp[-kh/(q-l)]  
exp(kA)+(q-l)  exp[-kA/(q-l)I ' 

heo = (2.12) 

(2.13) 

Equation (2.13) corresponds to equations (7)  and (11) of [22]. 
We now turn to the Mattis-Luttinger case. Using a trick described in [ 113, we obtain 

(2.14) 

where m satisfies the mean-field equation (2.9) and maximises (2.14). From (2.6) and 
(2.9) we obtain the mean-field equation 

-pf(p) = F (  m) - m - V F (  m )  + c(VF(  m))  

Tr, exp(8km - e") 
Tr, ,$e" exp( .$km * e") 

m = (  (2.15) 

To consider in what direction we have to take m so as to get a stable mean-field 
solution, we start by studying the ground states. We call points i for which 5, = I ,  blue 
and points for which ti = -1, red. As 

we see that points of the same colour interact ferromagnetically and points with a 
diflerenf colour interact antiferromagnetically. Hence we obtain ground states by 
putting all the blue points in one direction, say e'l, and all the red points in another 

The number of ground states equals the number of ordered pairs (U,, u2), i.e. iq (  q - 1). 
The mean-field equation which we obtain by assuming m = h ( e O - e l )  is 

direction, say e'2. The system is not frustrated and has order parameter m = +(e"' - eo> ). 

eo exp(kA)+e' exp(-kA)+(Z,46=: e"---') 
x exp( - k A )  - e' exp(kA) - (Z$Z\ e") A ( e o - e l ) = f  

exp( kA ) + exp( -kA ) + q - 2 

-I( 0 -  
- 2  e 

2 sinh( kA ) 
2 cosh( kA ) + q - 2 

If we define 

sinh y 
'(')=2 cosh y + q -2 

it is straightforward to calculate 

( q - 2 ) ~ 0 s h y + 2  
= (2 cosh y + q - 2)' 

and 

-2(q -2) cosh y + q2  -4q - 4  
(2  cosh y +  q -2)3 

f"(y)  = sinh y 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Hence f"(y) c 0 and f is concave for all y 3 0, if q 6, but f"(0') > 0 for q > 6. 
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Accordingly the transition becomes first order for q > 6 .  Note that, due to the 
evenness of the 6 distribution, the map m + - m  is a symmetry of the system, in contrast 
to the ferromagnet. As a curiosity we remark that a similar calculation for m = Aeo 
(which is an unstable direction) shows that the first-order behaviour in this direction 
already occurs if q > 4. 

Combining (2.4) and (2.10) we obtain the energy u ( p )  = - ikm2 where m satisfies 
(2.9) and maximises (2.8). Differentiating u ( p )  with respect to the temperature we 
find the specific heat. This is most easily done by implicitly differentiating m in (2.9) 
with respect to p. In a similar vein one obtains the susceptibility. For details, see § 9 
of [3]. 

With the methods of [l-3,  151 it is also straightforward to consider more general 
distributions of the 6 or cases where there are two or more random variables per site. 

3, Bifurcation analysis 

The conclusion of the previous section was obtained through the ansatz m = A (eo  - e'). 
To finish the proof we have to classify all solutions which bifurcate from zero, determine 
their stability, and show that none of them contradicts the above conclusion. This is 
done in the present section. Here we extend the Wu representation and study the 
properties of a somewhat more general class of c functions, which satisfy both the 
q-fold Potts permutation symmetry and the reflection symmetry of the 5 distribution. 
We start by developing a general theory. At the end of the section we specialise to 
Potts models. 

3.1. General theory 

Let c:Rq-[W be a twice continuously differentiable and even? function, which is 
symmetric under permutation of the arguments$. We denote vectors in R 4  by d, instead 
of a for vectors in R,-'. 

Formally, 

c(g2) = c(2 )  for all 2 E [W4, g E G := C, x S,.  (3 .1 )  
The group G is the direct product C, x S, of the permutation group S, and the 

reflections C z = { - l ,  +l}. Then the derivative Vc of c is equiuariant with respect to 
the group G, that is 

Vc(g2) = gVc(2) for all ?ER,, gEG=C2xS,,. (3.2) 

Vc(2) y = Vc(g2) . gy = g-'vc(g2) . y 

One can see this by taking the derivative of (3.1). We obtain 

for all y E R4, g E G.  
(3 .3)  

Multiplying (3.3) with gEG from the left yields (3.2). The property (3.2) allows us 
to restrict ourselves to certain subspaces, which we will now introduce. 

Definition. Let H E  G be a subgroup of G. The $xed space ( R 4 ) H  of H is defined to 
be the subspace of vectors in R9 which are invariant under H E  G, i.e. 

(Rq)" := (2 E R4 1 hx = x for all h E H}. (3.4) 

7 This holds because of the evenness of the distribution of the 5. 
$ This follows from the Potts symmetry. 
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For all subgroups H c_ G we have 

VC((R")") E (R4))". 

V C ( i )  = V c ( h x ' )  = h V c ( x ' ) .  

Namely, let h E H and i~ (Rq) ) " .  By (3.2) we then have 

We will denote the restriction of V c  to (Rq)H by V c H .  
If 61 solves the fixed-point equation (cf (2.9)), 

61 = V c ( k & )  (3.7) 

then g6I also solves (3.7). If 61 E (Rq) ' ,  gG stays fixed under the conjugate subgroup 
gHg-' .  

We can also draw some conclusions on the second derivative of c by the equivariance 
property (3.2). In future applications, a bifurcating branch is stable if all the eigenvalues 
of the second derivative of c are less than one [ 111. 

Definition. Let G be a group operating on a real vectorspace V by orthogonal matrices. 
Then V is called irreducible, if there is no proper subspace W E  V satisfying g W E W 
for all g E G. 

Every real vectorspace V with a group G acting on it as above has a decomposition 
n 

V = Q  Wi 
t = I  

(3.8) 

in irreducible subspaces Wi. 

complement W', such that 
Indeed, if V is not irreducible, we can find a proper subspace W with orthogonal 

g w E  w g W L c  wL for all g EG. 

Since W and WL have lower dimension than V, we can proceed by induction. 

Theorem 3.1. Let i0oEIWq, and let H G G  be a subgroup of G, such that x ' o ~ ( R q ) H .  
Suppose now that the Wi in the decomposition of R 4  into irreducible subspaces (with 
respect to H) 

n 

R " = $  W, 
, = I  

(3.9) 

are pairwise non-equivalent?. Then each of the W, is contained in some eigenspace 
of the second derivative L:=  D2c(g0) of c at 2, ( L  is viewed as a matrix). In particular, 
the number of real distinct eigenvalues of L is less than or equal to n ;  see (3.9). 

ProoJ: The second derivative L = D 2 c  of c at io is symmetric and equivariant with 
respect to H. This can be seen by differentiating (3.2). Now let II, be the projection 
onto W, parallel to the other Y$ and look at the composite map 

L I1 
@,,,: w, : R9 -Rq I4 w,. (3.10) 

t That is, there is no H-equivariant isomorphism from one such space to another. 
$ This projection is automatically equivariant. 
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The kernel and image of this equivariant map are H invariant. So they are either zero 
or the whole (irreducible) space W, or W,, respectively. Thus @,J is either zero or an 
isomorphism; in the latter case i = j  since the W, are pairwise non-equivalent. As a,,, 
is symmetric, it must have a real eigenvalue p the eigenspace of which again is H 
invariant. Thus, this eigenspace must be W, by irreducibility. Therefore we have for 
all w E W,: 

(3.1 1) pw = @,,,w = Lw. 

This proves the first assertion; the second is a direct consequence of the first. 

Remark. The theorem can be generalised [23], but it is sufficient for our purposes in 
this form. 

3.2. Dimensions of j x e d  spaces and the corresponding groups 

Given some subgroup H c G, we consider the action of H on the set 
M := { f 1 0 S S q - 1 } (3 .12)  

where the CU denote the standard basis of R4. If(*&,) is the orbit of g,, under H. If 
an orbit is such that If(&,) = If(-&), it is called irrelevant. This is motivated by the 
following proposition. 

Proposition. The dimension of (R4)’ is just half the number of relevant orbits. A basis 
of (R4)H is given by 

1 { d( Zu) := - h& I Zu E I} (HI h t H  

where I c M will be defined in the proof. 

Proo$ First note that d( &) = 0 if the orbit H (&) is irrelevant; for then H (  &) = H (  -&) 
and all terms in the sum are cancelled by their opposites. For relevant orbits, H ( & )  
and If(-&) are disjoint, so relevant orbits always come in pairs. To construct I, we 
choose a representative from each orbit pair H ( & )  U If(-&) of relevant orbits. By 
construction, any two 6(&) are orthogonal and their number equals half the number 
of relevant orbits. 

If the 6(&) did not span (R9)H,  then we could find some O f  x’= ( x o , .  . . , x,-,)E 
(Rq)’ orthogonal to all 6(&). So we get for all OG U S  q - 1 that 

Hence 2 = 0, which contradicts our assumption. 

Next we are interested in the number of different fixed spaces (Rq)H.  As shown in the 
following two theorems it turns out that we can find them without writing down all 
the subgroups H explicitly (this is possible but does not give much insight). 

Theorem 3.2. (a) If H contains only permutations, then all orbits are subsets of either 

M + : =  {ZU 10s U 6  q - 1) or M -  := { - & [ O S  U S  - I}, 
(b) If H contains some element (-1, n)  E C, x S,, then in each orbit half of its 

elements are in M+ and half are in M - .  
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Proof: Part (a) is obvious. Part (b) is reduced to (a). In case (b) we have for every 
0 s u 4 q - 1 that 

where := H n [{+1} x S,] is of the type described in (a) and both A(&) c M ,  and 
I?(--Zr,)c M... are disjoint orbits, which are of equal size since (-1, T) maps the one 
isomorphically onto the other. 

Theorem 3.3. For every decomposition 

M = U  Mu 

H ( Z u ) =  f i ( Z o ) L J f i ( - Z J  

K 

u = l  

of M into disjoint subsets of either type (a) or type (b) there is a group H, namely 

that has precisely the orbits M,. 

ProoJ: By construction every orbit H ( & )  is already contained in some M a .  It remains 
to construct, for any two *Zo, , *Zu2 E M,, some h E H that maps the one onto the other. 
If both elements have the same sign, the permutation of o, and u2 will do. If not, all 
M p  are of type (b). Then for each p arrange the indices of the *Zu E M p  into a cyclic 
permutation y p ,  such that the corresponding elements in M p  have alternating signs 
and such that u1 is taken to u2 by y p .  The desired element then is given by 

H : = { g E G l g M U s M u  for all ~ ~ ( Y S K }  

h = (-1, I ' I p r p )  E C, X S, .  

3.3. Applications to the Potts glass 

To link the results in this section to those of 0 2 we note that the eo are connected to 
the Zu by 

1 9-1 

q o=o 
e' = constant(Zu - 6) u=o , .  . . , q - 1  b=- Zo. (3.13) 

The hypertetrahedron which is spanned by the endpoints of the q unit vectors Zu lies 
in a hyperplane of dimension ( q  - 1) orthogonal to the vector b (see figure 1). 

The results we present here have been obtained mainly by straightforward calcula- 
tions, which do not provide much insight. Therefore we decided to state some results 
without proof. The mean-field equation (3.7) with c function given by 

satisfies the following lemma. 

Lemma. The image of Vc,  and therefore every solution of the mean-field equation 
(3.7), lies in the orthogonal complement (6)L of 

q u = o  

The linearisation? L =  L ( k ,  6I) of V c  at ( k ,  61) satisfies L(b) = 0 and 
L((b)l )  5: (by.  

This shows that b is a dummy direction, and that we indeed have reduced everything 
to the Wu representation. 

t Up to a constant this is the second derivative of c. 
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PI 10) 

Figure I .  ( a )  The Wu representation ( 2 . 2 )  in the case q = 3 .  The sum of the unit vectors 
e" is zero. ( b )  The very same representation is obtained through the prescription (3.13). 
The q endpoints of the standard basis vectors C-, OS CTS q - 1, span a simplex, whose 
centre of mass is the endpoint of 6. U p  to normalisation, e" equals C,, - 6, as  is easily seen 
in the figure for q = 3. 

The vector f i  = 6  is always a solution of (3.7). The linearisation L ( k ,  6) has the 
following eigenvalues: 

Eigenvalue Eigenspace Multiplicity 

Certain subgroups H determine a direction for some bifurcating branch. They will 
be examined in the sequel. 

I f  H contains only pure permutations (see theorem 3.2(a)), we consider the case 
where M ,  contains two (relevant) orbits M ,  and M 2  of length q1 and q 2 ,  respectively. 
The corresponding fixed space (Wq))" has a basis {gI,  g2}, where 6, = q; '  Z r i M ,  &. This 
fixed space contains the vector 6, and hence we can restrict ourselves to the subspace 
spanned by the vector gI - b;, which is orthogonal to 6. 

In the case of theorem 3.2(b) things are different. We get a one-dimensional fixed 
space if M has twot relevant orbits of length 2q , ,  and one irrelevant orbit containing 
the rest of M. Considering the orbits under the 'pure permutations' of H, we see that 
M ,  contains three of those, called M O ,  MI and M 2 ,  of length qO, q1 and q2 = q l ,  
respectively. MO is contained in the irrelevant orbit while the other two are part of 
the relevant orbits. Having defined Gr, i = 0 ,1 ,2 ,  in analogy to the previous case a 
spanning vector for the fixed space is given by dl - 6;. 
Theorem 3.4. For the 6, defined above we have 

6, - d2 
II bl - b2ll 

dl - g2 
II dl - 6211 

- + ) = f ( x )  

where f is given by 

(3.14) 

(3.15) 

t Remember that relevant orbits always come in pairs!  
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The values of the constants are given by 

Case PI Pz r 0' 

Theorem 3.2(b) 2q, 40 1 tlIb,-b,ll 

I 
Theorem 3.2(a) 2q1q, s: + 9: I II 6i- 911 

Corollary. f is strictly monotone and thus all non-trivial solutions of (3.7) lying 
in (Rq)" form smooth curves, which approach the ground-state solutions (of (3.14)) 
x = *flld, - 62\1(1&s for large k t .  The bifurcation is supercritical$ if and only if 

2 - 43s 41/42 s 2 + 4 3  

9 69, case of theorem 3.2(b). 

case of theorem 3.2(a) 
(3.16) 

The following tables provide the necessary information to determine the stability 

In the case of theorem 3.2(a) the matrix L(k,  x)  has the following spectrum: 
of the different branches. 

Eigenvalue Eigenspace Multiplicity 

A ,  (k, x )  = 0 ( 6) 1 

Remark. Except for A,, all eigenvalues are large for k large. Hence all these branches 
are unstable at low temperatures. 

In the case of theorem 3.2(b) L = L(k ,  x)  has the following spectrum: 

Eigenvalue Eigenspace Multiplicity 

A I ( k, x ) = 0 1 

1 

t See § 2 for a special case. 
'4 This means that the bifurcating branches 'bend to the right' 
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Remark. All eigenvalues except for A S  tend to zero for k large (low temperature). In 
particular all bifurcating branches of the type described in theorem 3.2(b) are unstable 
for k large, unless q,  = 1, in which case A 5  does not exist. 

With (3.16) we recover all the results of § 2. Note that in the present section we have 
found the bifurcation properties not only of the stable branches, but also of the unstable 
ones. 

4. Conclusion 

We have investigated a class of random-site mean-field Potts models. The solutions 
are described by mean-field equations which contain both the Potts (permutation) 
symmetry and a reflection symmetry. We have investigated how this symmetry influen- 
ces the number and the stability of the different solutions. In particular, it turns out 
that the value of the Potts parameter above which there occurs a first-order transition 
is different from the ferromagnetic case ( q  > 6 instead of q > 2). 
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